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Abstract-The low stiffness oflaminated rubber bearings utilized in base isolation could potentially
cause large lateral displacements which must be reduced by some energy-dissipation mechanism,
The effect of applying tuned-mass dampers towards reducing the lateral deformation of the isolators
was studied in this paper. The choice of the proper parameters of the tuned-mass damper and the
influence of excitation frequency on the response were investigated, Through the numerical simu­
lation of a five-storey base-isolated building subjected to different earthquake records, it was found
that although the tuned-mass damper had little effect on structural response during the first few
seconds of earthquake excitation, the damper may add damping to the structure to reduce
the subsequent response. The idea of the accelerated tuned-mass damper was proposed and
demonstrated the capability of decreasing the maximum deformation ofthe isolators which occurred
at the beginning of earthquake excitation.

I. INTRODUCTION

Base isolation is a new design philosophy for earthquake protection of structures in
which a building is decoupled from the ground so that any damaging earthquake motion
cannot be transmitted into the building. The most commonly used isolation system utilizes
laminated rubber bearings (Kelly, 1987). Laminated rubber bearings can significantly
reduce the acceleration response of a building; however, their low stiffness in the horizontal
directions may potentially cause unacceptably large lateral displacements which must be
reduced by some energy-dissipation mechanism, for example, high damping rubber bearings
(Derham and Kelly, 1985), lead-filled rubber bearings (Robinson, 1982) or oil dampers
(Kuroda et aI" 1989).

An aseismic hybrid control system was proposed by Yang et aI, (1991) which combines
rubber bearings and a passive tuned-mass damper. Numerical analysis was carried out on
a 20-storey building subjected to a simulated earthquake ground acceleration and the
proposed system was observed to be capable of effectively lowering the structural response.
This observation would imply that the tuned-mass damper could be employed as an energy­
dissipation device towards minimizing the deformation of rubber bearings.

Passive tuned-mass dampers have been successfully applied in high-rise buildings
toward reducing the vibration induced by the wind (Petersen, 1980). However, general
agreement has not been reached about the adequacy of tuned-mass dampers in reducing
the response of structures to earthquake vibrations (Kaynia et al., 1981). Several reasons
arise why the results from numerous studies on the seismic-response reduction are quite
contradictory. First of all, the earthquake motion may possibly induce multiple-mode
responses for tall buildings. A single damper tuned to the fundamental mode of a building
may not be effective in significantly reducing earthquake-induced motion (Clark, 1988).
Secondly, the damper parameters used in these studies may not be the optimum values for
the systems excited by ground motion (Villaverde, 1985). Thirdly, a tuned-mass damper
which is a passive device requires the motion of the primary structure to react with. For an
earthquake excitation in which its duration is substantially shorter than wind excitation,
the tuned-mass damper may not have time to produce a significant effect (Sladek and
Klingner,1983).
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Similar results may arise whenever applying the tuned-mass damper towards base
isolation as an energy-dissipation device. More intensive research on the factors which
affect the performance of tuned-mass dampers towards reducing the seismic response of
base-isolated structures becomes necessary, since only one simulated earthquake accel­
eration was chosen as the input in the study of Yang et at. (1991). The choice of the proper
parameters of the tuned-mass damper and the influence of excitation frequency on the
response are investigated in this paper. The responses ofa five-storey base-isolated structure
with a tuned-mass damper are analyzed by using various real earthquake records. The
effect of the tuned-mass damper on reducing the deformation of the isolator is then
discussed. A semi-active tuned-mass damper, referred to as the accelerated tuned-mass
damper, which can effectively reduce the maximum displacement of the isolator is finally
proposed.

The combined structure-damper systems possess three dynamic characteristics which
must be considered in the present analysis. The first is tuning, which causes the damper
vibration in resonance. The second is interaction, which is the feedback effect between the
motions of the damper and the structure. The third is non-classical damping, which occurs
as a result of the various damping characteristics among the damper, the structure and the
isolator. The light equipment in base-isolated structures has similar dynamic characteristics,
the seismic response of which can be accurately solved, not by using the classic mode
method, but by using the complex mode method (Tsai and Kelly, 1988). An efficient
algorithm for the complex mode method is introduced in this paper and applied towards
calculating the seismic response of base-isolated structures with tuned-mass dampers.

2. SOLUTION SCHEME

The two-dimensional model of a base-isolated building equipped with a tuned-mass
damper is shown in Fig. 1 where only horizontal degrees of freedom are considered. The
base of the isolated structure is treated as a rigid lumped mass, mh, and its displacement
relative to the ground is denoted as Uh' The isolation system has lateral stiffness kh, and
damping Cb' The tuned-mass damper is modeled as a mass md, stiffness kd and damping Cd'

The displacement of the tuned-mass damper relative to the base is denoted as Ud' The
superstructure has n degrees of freedom. The ith superstructural degree of freedom has a
lumped mass mi' The corresponding displacement components Ui represent the super­
structural deformation relative to the base. The total structural mass is
mJ = mh + L7~ I mi' The response of this base isolation model excited by a ground accel­
eration ug is governed by the following equations
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(mt+md)Uh+mdUd+ I miui+chub+kbub = -(mt+md)iig
i=l

n n

miUb + miUi+ L CijUj + L kijuj = - miug
j~ I i= I
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(1)

(2)

(3)

for i = 1, ... , n, in which cij and kij are the entries of the damping and stiffness matrices of
the superstructure.

The above three equations can be combined to obtain

Mii + Cli + Ku = - Mriig (4)

where

u = [Uh Ud U, unV (5)

and

r = [1 0 0 Or. (6)

This is the equation of motion for a system of n + 2 degrees of freedom. Equation (4) could
be solved by the classic mode method, if the matrix C were approximated to be in proportion
to the mass and stiffness matrices. However, this approximation can cause a large error if
the system contains the tuned light mass (Tsai and Kelly, 1988). To be exactly solved, eqn
(4) must be reformulated into a first-order 2(n+2)-dimensional system of equations (Hurty
and Rubinstein, 1964),

Av+Bv = -Fug

in which

(7)

[0 MJA- .
- M C ' (8)

The associated eigenproblem equation is of order 2(n + 2) which can be expressed as

(9)

where Pi and 'l'i are the ith eigenvalue and eigenvector. Since matrices A and Bare
symmetrical but are not positive definite, Pi and 'l'i will be complex in value and occur in
conjugate pairs. The eigenvectors 'l'i can be simplified according to the definition of v in
eqn (8) as

(10)

where <l>i is the eigenvector corresponding to the displacement components.
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Applying the orthogonal property of eigenvectors and the transformation

2(n+ 2)

V = L: Zi'Pi
i= I

(II)

where Zi are the generalized coordinates to be solved, eqn (7) can be decoupled to 2(n +2)
independent differential equations

7;, - P,Zi = - N/lg

in which N i is the participation factor defined as

The solution of Zi is Nihi(t) with

hJt) = e N hi(o)-1 ePi(t-t) iig(T)dT

where hlO) is derived from the initial condition of v,

'I';Av(O)
hJO) = .

'I';F

(12)

(13)

(14)

(15)

The values ofhlt) for varied t could be computed by any numerical integration method.
However, if the ground acceleration is piecewise linear and defined at time series tb the
integration in eqn (14) can be explicitly derived and hi(t) can be calculated by the following
algorithm

(16)

(17)

wherej~ is the ground acceleration iiqat time tk and Sk = (Ik-!k-l)/(tk- (k-l)' If the ground
acceleration is defined at constant time interval, the exponential term in eqn (16) is constant
for different t k and can be calculated before the algorithm is proceeded with. The algorithm
becomes very efficient in the light of only three multiplication operations ofcomplex number
being required for each time step.

Following eqn (11), the displacement vector can be found by the combination of all
modes

2{!I+2,

U = L: NihJt)<Di·
i=l

(18)

Only n+2 modes are, in practical application, required in the combination, since Ni, hi and
<D i are complex and occur in conjugate pairs.

3. PARAMETERS OF TUNED-MASS DAMPERS

Choosing the proper parameters of tuned-mass dampers is an important factor which
affects the performance of tuned-mass dampers towards reducing the seismic response.
When studying the parameters of tuned-mass dampers, the primary structure of concern is
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generally simplified as a main mass of which the natural frequency is denoted as wp and the
damping ratio is ~p" The mass of tuned-mass dampers is expressed by the mass ratio, y, that
is, the ratio of the damper mass to the main mass. The stiffness of tuned-mass dampers is
represented by the tuning frequency ratio, f, that is, the ratio of the natural frequency of
the damper to that of the primary structure. The damping ratio of the tuned-mass damper
is denoted by ~s.

The optimum tuning frequency and damping ratio of the tuned-mass damper which
can minimize the steady-state response of the damped primary structures have been derived
(Tsai and Lin, 1993) as

(
JI-O.5Y ~ ) !!

f= l+y +y!l-2~;-1 -(2.375-1.034y!y-0.426Y)Y!/~p

- (3.730-16.903 JY+20.496y)JY~; (19)

(20)

For the transient response, it has been found (Tsai, 1993) that there exists a critical
damping level for tuned-mass dampers which is equal to ~p+h. Increasing damping in
the damper would enhance the Green's function of structural response whenever the damper
damping (is larger than the critical value. When the damper damping is smaller than the
critical value, the Green's function develops beat phenomena. The structure with a damper
ofless damping would have a smaller response in the first beat cycle, but also have a higher
rebound in the following cycles.

The optimum damping defined in eqn (20) is observed to be smaller than the critical
damping of the Green's function. For the case of ( = 0.04 and ~p = 0.02, the critical
damping is 0.22 and the optimum parameters calculated from eqns (19) and (20) are
f = 0.943 and ~s = 0.125. Having the same tuning frequency, the Green's functions of
structural response using the critical damping and the optimum damping are plotted in
Fig. 2, which indicates that the optimum damping has a smaller response than the critical
damping and a high rebound would not occur. This phenomena suggests that the optimum
parameters obtained from the steady-state response can be applied for the transient
response.

To investigate whether the optimum parameters obtained from eqns (19) and (20) are
suitable or not for the real earthquake response, the responses of a primary mass excited
by the EI Centro record are computed for various damper dampings and compared in Fig.
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3. The solution scheme described in the last section is applied except that the superstructural
degrees offreedom are neglected. In Fig. 3(a), around the 10th s of the response histories,
the lower ~s is shown to have a smaller response; however, the beating effect occurs around
the 15th s. Figure 3(b) shows that damping which is larger than the critical value has a
higher response. Figure 3(c) reveals that the response of the optimum damping is lower
than that of the critical value and beat rebound is not high. Consequently, the optimum
parameters obtained from the steady-state response can be adopted as the proper par­
ameters for the seismic response.

Villaverde (1985) has recommended using the critical damping ratio, ~p + J 1', as the
damping ratio of the tuned-mass dampers, on the basis of the phenomenon that response
spectrum ordinates always decrease as the damping increases. However, this situation is
shown in Figs 2 and 3 to be untrue. Response spectrum method is based on the classical
mode theory which, as mentioned before, may potentially create a large error when applied
towards solving the tuned-mass damper problem.

4. INFLUENCE OF INPUT FREQUENCY

Another factor which can affect the performance of tuned-mass dampers is the charac­
teristics of input accelerations. The variations of steady-state responses with input fre­
quencies are plotted in Fig. 4 for different sizes of optimum dampers. This figure dem­
onstrates that increasing the mass ratio, y, can reduce peak amplitudes; however, for input
frequencies that are lower than the frequency of the first peak, increasing the mass ratio
will enhance response amplitudes because of wider separation between the two peaks. For
high input frequencies, the damper has little effect on reducing the structural response.

Similar results can be observed from the transient responses of the primary structure
excited by the harmonic ground motions with three different input frequencies shown in
Fig. 5. The acceleration of ground motions is defined as

1

0.25H sin (wt)

ag(t) = 0.75Hsin (wt)

Hsin(wt)

for 0 ~ t ~ n/w

for n/w ~ t ~ 2n/w

for 2n/w ~ t

(21)

where w is the input frequency and H is the input amplitude which is set to be 1 m/s2
• The

corresponding displacement function oscillates about the zero base line simulating real
earthquake records. The structural parameters used are wp = 0.503 Hz, ~p = 0.05, y = 0.05,
f = 0.914 and ~s = 0.143, which are obtained from eqns (19) and (20).

The displacement responses of the primary structure excited by impulsive ground
motions with different durations are shown in Fig. 6. The input acceleration is defined as

{H sin (4nlfT) for o~ t ~ T/4

Hcos (2nt(T) for T/4 ~ t ~ 3T(4
a (t) = (22)
g ;Hsin (4nt/T) for 3T/4 ~ t ~ T

for T~t

The corresponding displacement function is an impulse of duration T. After the impulse
excitation, the response of the structure having the tuned-mass damper decays faster than
that without the damper. However, the damper does not have any effect during the first
cycle of the responses and the structural response is the same as that without the damper.
For an impulse excitation of long duration, that is, 4.0 s, the first few peaks of the response
of the structure with the damper are higher than that without the damper. This occurs as a
result of the excitation frequency being lower than the natural frequency of the structure,
that is, the same reverse effect indicated in Fig. 4.

The natural frequency of the base isolation system is generally below the dominant
frequency range of earthquakes. The frequency contents of earthquakes which would
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become amplified by the tuned-mass damper are very small in base isolation systems. This
is a virtue of using the tuned-mass damper for base-isolated structures.

5. RESPONSE OF BASE-ISOLATED STRUCTURES

In the light of a large variation in stiffness between the isolators and the superstructure,
the superstructural deformation is always much smaller than the deformation of the
isolators, especially at the fundamental vibration mode in which the deformation of super­
structural components is negligible. Reducing the vibration of the first mode can sig­
nificantly decrease the deformation of the isolators. Consequently, a single damper tuned
to the fundamental mode is adequate for reducing the earthquake vibration of base-isolated
buildings. This is yet another advantage of using the tuned-mass damper for base-isolated
structures.

The base isolation model used in the numerical simulation is a five-storey building
which can be simplified as a six-degree-of-freedom system. Each floor in the superstructure
has the same mass, 3500 kg, the same stiffness, 35 kNjmm, and the same damping, 35
Nsjmm. If the superstructure is assumed to be fixed at the base, the natural frequency of
the superstructure is 4.5 Hz and the corresponding damping ratio is 0.014. The mass of the
base, mh, is 3500 kg. The total mass of the base-isolated structure, mf' is 21000 kg. The
numerical simulation is carried out on two types of isolation systems which have the same
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stiffness but different dampings. The stiffness of the isolation system, k h , is 0.21 kN/mm
and the natural frequency of the base isolation system, Wh = Jkh/n1f, is equal to 0.503 Hz.
One type of isolation system has a lower damping level Ch = 2.66 Ns/mm, which corresponds
to the damping ratio, ~h = Ch/(2whn1f), equal to 0.02. The other type has a higher damping
level Cb = 6.64 Ns/mm, which corresponds to ~b = 0.05. The mass of the damper, n1d, is
1050 kg, which corresponds to a mass ratio oft = n1d/n1f = 0.05. The tuning frequencies and
damping ratios were obtained from the optimum parameters of the steady-state response in
eqns (19) and (20) by assuming that wp = Wh and ~p = ~h'

The displacement histories at the base of the isolated structure excited by the four
earthquake records are plotted in Fig. 7 for ~h = 0.02 and Fig. 8 for ~h = 0.05, where the
responses using the optimum damper are compared with the responses without the damper.
The responses of the structures with the dampers are inferred from these figures to display
a quick decay, except for the first few seconds in which the responses are close to those
without the dampers. The tuned-mass damper is shown, from a comparison of Fig. 8 with
Fig. 7 to be more effective on the isolation system with a lower damping level.

The reduction ratio, defined as the ratio of the maximum base displacement of the
structure with the damper to that without damper, can be regarded as an index which
demonstrates the effectiveness of the tuned-mass damper acting as an energy-dissipation
device of the base isolation system. The variation of the reduction ratios with different
damper masses are plotted in Fig. 9 for four earthquake records and two types of isolator
damping, which shows that the values of the reduction ratios are quite influenced by the
earthquake records. The tuned-mass damper can effectively reduce the maximum base
displacements when the structure is excited by the Taft record and the Parkfield record.
The values of the reduction ratios have a tendency to decrease as the dampers become
heavier; however, the decrease curtails after the mass ratios become greater than some
values. The heavier damper is indicated from eqn (20) to have a higher optimum damping
and so have a faster decay in response, which causes the time when the maximum dis­
placement peak occurs to move to the beginning of the history. However, since the damper
has little effect on reducing the response at the beginning of the excitation, the maximum
displacement becomes unchanged as the mass of the optimum damper continues to increase.
For the Pacoima Dam record, the reduction by the tuned-mass damper becomes less
effective in the light of the fact that the maximum responses happen very early, as shown
in Figs. 7(d) and 8(d). The variation of the maximum displacements with the damper
masses for the EI Centro record is very peculiar. The maximum response is enhanced by
the heavier damper. whenever the mass ratios are greater than some value. As shown in
Figs 7(a) and 8(a), the structure with the damper notably has a higher response at the peaks
near the 5th s than that without the damper. The reasonable explanation is that the El
Centro record contains some low-frequency energy during the first few seconds. The peculiar
phenomenon in which heavier dampers can create a higher maximum displacement could
appear whenever the maximum displacement occurs on one of the peaks near the 5th s.

6. ACCELERATED TUNED-MASS DAMPERS

The tuned-mass damper, which is a passive device, requires the motion of the primary
structure to react; consequently, the tuned-mass damper has little effect on the structural
response in the first few seconds of the excitation. The tuned-mass damper exerts no effect
towards reducing the maximum deformation of the isolator, if the maximum response
occurs early in the earthquake record. Accelerating the motion of the tuned-mass damper
at the beginning of the excitation is one way of making the tuned-mass damper react earlier
in earthquake excitation.

Accelerating the tuned-mass damper requires careful examination because unsuitable
acceleration may potentially enhance the deformation of the isolator. When the deformation
of the isolator reaches one of the peaks, applying an impulse towards the damper in the
same direction of the isolator displacement can accelerate the damper and also create a pull
force to the isolator which can consequently reduce the deformation of the isolator at the
next peak. A threshold value is set for the deformation of the isolator, since not every
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earthquake excitation is so severe that the tuned-mass damper must be accelerated every
time. The deformation of the isolator is monitored during the earthquake excitation. The
velocity of the tuned-mass damper is increased to a fixed value, whenever the deformation
peak of the isolator is over the threshold value.

The feasibility of the accelerated tuned-mass damper is confirmed by modelling the
base-isolated structure as a main mass having the natural frequency of wp = 0.5 Hz and a
damping ratio of ~p = 0.02. The mass ratio of the damper is y = 0.04 and the optimum
parameters off = 0.943 and ~s = 0.125 are used. The velocity of the tuned-mass damper is
accelerated to be 5 mls when the deformation of the isolator reaches the first peak, which
is more than lOO mm.

The displacement responses of the main mass equipped with the accelerated tuned­
mass damper are plotted in Fig. 10 for the excitation of the four different earthquakes. The
intensity of the Taft record has been magnified four times so that the deformation of the
isolator can reach over the threshold value of 100 mm. The response curves of the passive
tuned-mass damper without accelerator are also shown in this figure, which reveals that
the accelerator causes the decay of the response to occur earlier. As far as the maximum
displacement is concerned, the accelerated tuned-mass damper has a 24% reduction for the
Parkfield record and 12% reduction for the Taft record and the Pacoima Dam record. For
the EI Centro record, the tuned-mass damper accelerated at the peak of the 3rd s has little
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Fig. II. Responses excited by EI Centro record. using twice-accelerated tuned-mass damper.

effect on the maximum displacement at the 5th s; however, it can reduce the subsequent
deformation.

Figure 10(a) suggests that accelerating the tuned-mass damper once is possibly not
enough to reduce the maximum displacement. If the damper is accelerated twice, the
maximum displacement is shown in Fig. II to have a 30% reduction for the EI Centro
record. Accelerating twice has little effect for the other three records because the second
acceleration is functioning on or after the maximum peak.

7. CONCLUSION

The factors which affect the performance of the tuned-mass dampers on the seismic
response of base-isolated structures were investigated from three aspects, that is, the tuned­
mass dampers, the input earthquakes and the base-isolated structures.

There exists a critical value for the damper damping. If the damper damping is higher
than this value, the tuned-mass damper would not reduce but rather enhance the structural
response. The optimum tuning frequency and damping ratio of the tuned-mass damper
obtained from the steady-state response provides a good guideline for the design of the
tuned-mass damper to be applied towards reducing the seismic response of base-isolated
structures.

The response on base-isolated structures equipped with the tuned-mass damper is quite
dependent on the input earthquake motions. Adding the tuned-mass damper to the structure
would enhance the structural response if the input frequency is lower than the natural
frequency of the structure. This is not serious for base isolation because the natural
frequency of base-isolated structures is generally lower than the dominant frequency of real
earthquakes.

A single damper tuned to the fundamental mode is adequate for reducing the seismic
response of base-isolated buildings, because the fundamental mode of base-isolated struc­
tures is nearly a rigid body mode which dominates in earthquake vibrations. Although the
passive tuned-mass damper has little effect on the structural response during the first few
seconds of earthquake excitation, the damper can add damping to the structure to reduce
the subsequent response, as indicated from the numerical simulation on the base-isolated
buildings subjected to the excitation of four earthquake records. The reduction by the
tuned-mass damper becomes more prominent if the isolation system has less damping.

If the maximum response occurs early in the earthquake excitation, using the accel­
erated tuned-mass damper can effectively decrease the maximum deformation of the
isolator. However, the proposal for the accelerated tuned-mass damper presented in this
paper is only conceptional and idealistic. The issues of practicality and reliability of the
accelerated tuned-mass damper remain to be resolved.
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